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COMMENT
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Abstract. We analyse a recent approach to quantum systems based on some recent cellular
automata models. It is shown that, although mass and probability conservation holds, non-
physical behaviour is typically obtained.

Recent studies [1–3] have shown the interest of cellular automata (CA) models as an
adequate approximation to quantum systems. A CA model can be constructed with a unitary
evolution operator [1] and several generalizations lead, under some natural assumptions, to,
for example, the Weyl equation [2]. A recent study by Kostin [3] has used this CA approach
to the Schr̈odinger and Dirac equations. Kostin claimed that such methods have some
advantages over local conventional numerical methods. These advantages are that, because
they conserve mass and probability, they can never give solutions that grow without bound.
In some local conventional numerical methods, meaningless solutions can be obtained that
grow with no bounds if the spatial step is too small or if the time step is too large.

Though mass and probability conservation certainly hold in Kostin’s approach, this is
no guarantee for the discrete system to be physically meaningful, as we will show in this
comment.

Let us consider our system as being discrete in space and time, on a uniformly distributed
grid, 1x being the spatial step between lattice points, and1t the corresponding time step.
If only local (nearest-neighbour) rules are considered, information propagates at a finite
speedv < 1x/1t . Kostin’s CA model is a discrete approximation to the Schrödinger
wave equation (SWE), that is to say, to a wave equation where information propagates
with a group velocityvg. So if the spatial discretization1x is too small or the time
discretization1t is too large, information will never propagate with group velocityvg. In
other words, the discretized system is unable to reproduce the dynamic behaviour of the
continuous counterpart. This is a physical constraint for any local discrete system, but
numerical constraints are generally stronger.

According to Kostin’s CA model, the following rules for time evolution of the local
massmj at a given lattice point are obtained:

Mj = mj − κ(mjnj−1)
1/2 − κ(mjnj+1)

1/2 + λj (mjnj )
1/2 (1)

Nj = nj + κ(njmj−1)
1/2 + κ(njmj+1)

1/2 − λj (mjnj )
1/2 (2)
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with:

mj = a2
j nj = b2

j

κ = h̄1t

m(1x)2

λj = 2κ + 2Vj1t

h̄

where the amplitudesaj andbj are the real and imaginary parts of the wavefunction at site
j , i.e.ψj = aj + ibj , andVj is the potential atj . Here upper case letters hold for updated
quantities.

Now let us see that meaningless, non-physical time evolutions are obtained by following
the previous equations (1), (2). Let us consider a small perturbation of the wavefunction
ψj by a valueε > 0, i.e. ψ̃j ≡ (aj + ε) + ibj = ψj + ε (in the following, we use the
notation˜ to indicate a perturbed quantity). Then the time evolution for the probability
densityp̃jobtained fromψ̃j (using Kostin’s equations) will be

P̃j = Mj +Nj = (aj + ε)2 − κ(aj + ε)

(
bj+1 + bj−1 − λj

κ
bj

)
+b2

j + κbj

(
aj+1 + aj−1 − λj

κ
(aj + ε)

)
= a2

j − κaj

(
bj+1 + bj−1 − λj

κ
bj

)
+ b2

j + κbj

(
aj+1 + aj−1 − λj

κ
aj

)
+(2aj + ε − κ(bj+1 + bj−1))ε

≈ Pj + (2aj − κ(bj+1 + bj−1))ε

wherePj is the updated probability density obtained for the non-perturbed wavefunction
ψj . If aj andbj are both positive, then the following implication

p̃j > pj ⇒ P̃j < Pj (3)

holds for
1t

1x2
>
m

h̄

2aj
bj+1 + bj−1

. (4)

One can see that this implication is physically meaningless. Let us consider two identical
initial states, only differing byε at a given pointj . Then, following Kostin’s arguments,
the state with higher probability atj , once updated, will have the lowest probability atj .

Moreover, the time evolution of the probability depends strongly on the quotient
1t/1x2. Given a time step1t , there exists1x such that the probability behaves as

p̃j > pj ⇒ P̃j < Pj

and there exists1x such that

p̃j > pj ⇒ P̃j > Pj

and, when1x goes to zero,P̃j goes to−∞.
Finally it can be pointed out that in the limit when both1x and1t go to zero, the

discretization does not reduce to the SWE, becauseκ is undefined. In order to guarantee that
the discretized system reduces to SWE we must require thatκ goes to zero (which makes
the method impracticable), or that the numerical scheme is stable, i.e. given a continuous
solution it remains continuous through the time evolution.
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